Tuesday, 20 February 2018

What is AI Technique?

What is AI Technique?


In the real world, the knowledge has some unwelcomed properties −

●      Its volume is huge, next to unimaginable.


●      It is not well-organized or well-formatted.


●      It keeps changing constantly.


AI Technique is a manner to organize and use the knowledge efficiently in such a way that −

●      It should be perceivable by the people who provide it.


●      It should be easily modifiable to correct errors.


●      It should be useful in many situations though it is incomplete or inaccurate.


AI techniques elevate the speed of execution of the complex program it is equipped with.

Monday, 19 February 2018

Programming Without and With AI

The programming without and with AI is different in following ways −


Programming Without AI

Programming With AI

A computer program without AI can answer the specificquestions it is meant to solve.

A computer program with AI can answer the genericquestions it is meant to solve.

Modification in the program leads to change in its structure.

AI programs can absorb new modifications by putting highly independent pieces of information together. Hence you can modify even a minute piece of information of program without affecting its structure.

Modification is not quick and easy. It may lead to affecting the program adversely.

Quick and Easy program modification.

Robots in Engineering and Manufacturing

From the inspiration of the miraculous robot origins of the 1960s to the far-fetched imagination portrayed in movies, we see how robots have digressed from their silver screen persona to create an impact in our day-to-day lives in a practical sense.


The mere mention of the word robot conjures images of human-like machines capable of intelligent interaction with the world around them. From the robots of odd shapes and forms in George Lucas’s original "Star Wars" of 1977 to the lifelike robots shown more recently in the 2004 movie "I, Robot" adapted from Isaac Asimov’s classic novel of 1950, these androids, equipped with fictitious highly advanced artificial intelligence by their makers, were able to mimic human intelligence and thrive and survive through all forms of challenges and obstacles in their environment. Another incredible example of robots that have been put to great film effect is found in the movie Transformers, an adaptation from the animated series of the 1980s. Although recent years have seen almost similar commercially-produced robots in the form of AIBO and ASIMO introduced by Sony and Honda respectively, the real practical use of robots in the engineering industry is a huge contrast to what their persona from the silver screen would suggest.


 In the real world, robots are utilised to perform repetitive tasks and job functions which are in likelihood too tedious and boring for man to perform, such as in the manufacturing line of plastics and various hardware. These practical robots often take the form of mechanical arms equipped with electromagnetic plates, grippers, or suction cups working in tandem with conveyor belts to aid in the assembly of equipment in the manufacturing industries. Although stationary in nature, these robotic arms are endowed with several degrees-of-freedom, giving them the flexibility to move in many directions through multiple angles with utmost ease and agility.


Robots can also be made to execute difficult activities and processes requiring high precision at an accuracy usually beyond human capabilities. Through proper programming, a task can be repeatedly carried out with minimal or virtually without error. With proximity and pressure sensors abound, the accuracy which can be achieved by some of these robots can be rather remarkable, and allow them to work with extremely fragile materials with great care. Even enervating jobs requiring skill and expertise such as arc welding and spray painting can seem like child’s play to a robot.


Robots are also best employed in situations which may prove to be too dangerous for man to perform. In steel manufacturing mills, robots are used in materials handling and transfer, to load iron ore and coke into blast furnaces and move molten iron, a chore perhaps too life-threatening for man himself to undertake. With practical use of robots such as these, accidents and loss of life at the industrial workplace can be minimized. Also, with the capability of withstanding stress far beyond what human being can endure, these tireless machines have a proven reliability and a track record in getting the job done right without the adversities and risks commonly associated with human error and behaviour.


Robots have also assisted man in accomplishing job duties in environments which are not conducive to human life. In space exploration, the rover spacecraft robots had been successfully deployed by NASA in their Mars Exploration Rover Mission to survey and explore the surface of Mars, and to retrieve geological samples from the red planet. In marine engineering, robots known as autonomous underwater vehicles (AUVs) serve to produce detailed maps of the seabed for the oil and gas industry, as well as for research into deep underwater chemical compound composition and the presence of microorganisms without any risk to human life.


In HVAC applications, robots equipped with sensors and brushes are commonly used to effectively clean air-conditioning ducts in the engineering maintenance of commercial buildings. Camera sensors are sometimes installed on these robots to allow their human operator a glimpse of duct interiors that are mostly too narrow and tight for humans to work inside them. Similar robots have also recently found their way into residential homes, performing the same automated cleansing duties on floors and carpets.


Robotic Arm

In closing, robots have established their place as dependable servants in the daily lives of human beings, with robotic technology playing a vital role in the engineering industry. Robots have been reliable in getting their assigned responsibilities accomplished correctly and accurately with great efficiency, and keeping their human masters safe from harm in the process.

Sunday, 18 February 2018

ADVANTAGE OF ROBOTICS

Advantages of Robotics in Engineering


Some advantages of robotics, like improved quality and quantity of production, are due to the mechanical nature and computerized control in industrial robotics technology. Other advantages of robotics are due to freedom from human characteristics like boredom and the ability to do dangerous tasks.


Background


The advantages of robotics have become more apparent as industrial robotics technology has grown and developed in the 50+ years since the first industrial robot, Unimate, was put into use in the 1950s. About 90% of the robots in use today are in the industrial robotics sector in factories. As of 2004, about 140,000 industrial robots were in use in the U.S., as reported by the Robotics Industry Association (RIA). Robots are now also used in warehouses, laboratories, research and exploration sites, energy plants, hospitals, and outer space.


The advantages of robotics can be classified into four major categories: 1) quality/accuracy/precision; 2) Efficiency/speed/production rate; 3) Ability to work in environments that are unsafe or inhospitable for humans; 4) Freedom from human limitations such as boredom and the need to eat and sleep.


Advantages of Robotics #1: Quality/Accuracy/Precision


Many industrial robots are in the form of a robotic arm. The image at the left shows Unimate, the first industrial robot, which has the appearance of a robotic arm. The image in the next section shows a contemporary industrial robotics arm. Due to its mechanical nature and computerized control, a robotic arm can carry out a repetitive task with great precision and accuracy, thus providing improved, consistent product quality. This would apply to quite a variety of production line tasks, like welding, assembling a product, spray painting, or cutting and finishing.


Advantages of Robotics #2: Efficiency/Speed/Production Rate


The same features of industrial robotics technology mentioned above, the mechanical nature of the equipment and the computerized control, make industrial robotics technology more efficient and speedy, leading to higher production rates than with human labor. Another aspect of efficiency is that robots can be mounted from the ceiling and have no problem with working upside down. This can lead to a savings in floor space.


Advantages of Robotics #3: Ability to Work in Environments that are Inhospitable to Humans


This is an interesting set of advantages of robotics. There are a number of tasks that are too dangerous, too exposed to toxins, or just plain too dirty for humans to conveniently do them. These are ideal robotics tasks. This includes tasks as simple as spray painting, because there is no need to worry about the robot inhaling the paint fumes! It also includes such daunting tasks as defusing bombs and such dirty tasks as cleaning sewers.


Advantages of Robotics #4: Freedom from Human Limitations like Boredom


This set of advantages of robotics is due to the fact that human characteristics like boredom from doing a repetitive task don't interfere with the functioning of a robot. There is some overlap with the first two categories of advantages of robotics, because the lack of interference from boredom leads to greater accuracy, quality, and rate of production. There is more to this set of advantages of robotics, however. Since a robot doesn't need to rest or eat, and never gets sick, a robotic arm can work 24/7, with only limited occasional downtime for scheduled maintenance.


Limitations of Robotics


An article about the advantages of robotics wouldn't be complete without some discussion of the limitations of robotics. In spite of the very useful set of advantages of robotics discussed above, there are some tasks for which human beings are better suited than robots. For example:


Robots are not suited for creativity or innovation


Robots are not capable of independent thinking


Robots are not good at learning from their mistakes



Robots are not as suitable for making complicated decisions

 
Robots can't as readily adapt quickly to changes in the surroundings


Human beings are needed for these types of tasks, so there is hope that we will not become superfluous in a world dominated by robots at some point in the future, as projected by some science fiction authors!


Summary


The advantages of robotics in an industrial setting, where most of them are used, are notable, including increased product quality and quantity, ability to work in inhospitable environments, and freedom from natural human needs like food and rest. There are, however, some limitations of robotics, in areas such as creativity, innovation, independent thinking, and making complicated decisions, that lead to a projection that humans will remain in charge of robots rather than vice versa.

INTRODUCTION TO ROBOTICS

Introduction to Robotics Technology

Robotics technology consists of the devices, components, designs, and programming that have gone into development of robots as we know them today. A large sector is industrial robotics, with many of the industrial robots being essentially a robotic arm.

What is Robotics Technology?

Robotics technology has developed considerably since the author, Isaac Asimov, coined the term robotics in the early 1940's in one of his science fiction stories. Robotics is defined as: The science or study of the technology associated with the design, fabrication, theory, and application of robots, in the 2009 update of the Fourth Edition of The American Heritage Dictionary of the English Language. This definition brings up the question, 'What is a robot?' There are indeed a number of definitions in use for 'robot.' A usable one that is attributed to the Robotics Institute of America (RIA) is: A robot is a reprogrammable multi-functional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.

What do Robots Do?

In order to learn about robotics technology, it is helpful to learn a bit about robots and their capabilities. When the idea of robots was first developing, they were envisioned as humanlike in appearance and in behavior.

The greatest number of robots in use, however, are industrial robots, which do not look at all like humans. The images in this section show a couple of industrial robots, one doing material handling and the other doing welding. Many industrial robots, like the two shown here, look somewhat like an arm, and also go by the name 'robotic arm.'

A large percentage of the robots in the world are industrial robots used in a wide variety of industries. Robots can do jobs that would be boring for humans and jobs that are dangerous or dirty. Robotics technology has developed to the point that robots can lift heavy objects, do precise assembly line work, pick something up and place it precisely where it needs to be, guide a machining operation, defuse bombs, or inspect sewers, just as a few examples.

 The first industrial robot, Unimate, was developed by George Devol, and was used for die casting handling and spot welding by General Motors. This was perhaps a predictor of things to come, because the automobile industry today is the largest user of industrial robots and robotic arms.

In addition to industrial robotics, another large sector is robot toys and robotics in games. Robots in this sector are more likely to have an appearance that is more like humans, and to have motion capabilities and the capability to do human types of activities.

The Components of Robots

One way of generalizing the nature of robotics technology is to categorize the typical components of robots. The components of a robot would typically include a power source, a means of sensing, actuators, a power source, a means of manipulation, an overall structure, and perhaps a means of locomotion. Robotics sensors are available to measure a wide range of parameters, such as light, temperature, sound, or acceleration. Actuators make robots or parts of robots move. The most commonly used actuator for robots is the electric motor. Batteries are a commonly used power source. A couple of ways that manipulation can be accomplished are with vacuum grippers or with mechanical grippers. Mechanical grippers are the most common means of manipulation. The first robots used as industrial robots were stationary and so didn't need any means of locomotion. Now robotics technology has advanced so that some robots require a means of locomotion to do the tasks for which they are designed. The simplest means of locomotion is four wheels, although some robots move by a number of different methods, including walking, snaking, or hopping.

Summary

Robotics technology goes back at most 70 years, to the time when Isaac Asimov first used the term robotics in his writing. The use of industrial robots, such as robotic arms, has grown tremendously, so that now industrial robots carry out a wide variety of tasks that are too boring, too dirty, or too dangerous for humans to do.

Friday, 16 February 2018

Future of Robotics

The Future of Robotics

It is anticipated by engineers and scientists that in the near future robots will be seen generally at numerous establishments, including production units, farming, hospitals, maintenance, construction, and in homes. Robots will be able to substitute for individuals in most factories where tasks of extra precision are necessary and production rate is important, which is difficult to be performed correctly by human labor.


General Usage Of Robots In the Future


International experts on robotics are of the view that by year 2020, robots will be capable of observing and performing tasks, talking, and will possess aptitude and intellect. The association of human beings with robots will be ordinary and usual. In the near future, robots will not be a complex machine, but equipment or machinery to be utilized in every day life, including washing, assisting in moving of disabled or injured people, working in factories, etc.


Robotic Surgery


Doctors visualize that in the near future advanced robots will be utilized to assist in carrying out long distance medical treatment including surgery, diagnosis, and other medical treatment. This will enable the treatment to be carried out in a shorter time, and it may not be necessary for the patients to travel long distances, which presently may even involve travel from one continent to another. Robots may also assist in carrying out minor medical treatment, instead of advising a pill for certain ailment, a small robot may be introduced in the blood, which will sense the reason of ailment, and subsequently arrange appropriate medicines in the affected part of the body.


Improvement In Human Brain


Robots will be introduced into parts of human beings, such as intellectual insertion in the brain, which will enhance memory and improve ideas in the mind. Nano robots will even be injected into the blood to wash and scrub blood vessels. The human mind with the assistance of robotic brains will be able to perform 100 trillion commands per second.


Robots In Biomimetics


The next concentration for modern robots will be biomimetics, an area which will concentrate on the manufacture of equipment that obtain guidance from the environment as motivation for their looks and attitude. Presently, broad research is being carried out in this field.

Thursday, 15 February 2018

BENEFIT OF ROBOTICS

Benefits Of Robots


Robots have many advantages, and production units which do not obtain their services will be left behind and will not be able to compete in quality, production, and cost.


Introduction


Robots have been developed by extended modern research, and are being used in numerous industries for achieving advantages which would not be possible with the human beings. Some of the advantages for using robots are mentioned below:


Operatin In Unsafe Surroundings


There are numerous industries where the surroundings are unsafe for the employment of human labor due to the existence of hazardous environments. Robots can be used effectively in such environments where handling of radioactive materials is involved, such as hospitals or nuclear establishments, where direct exposure to human beings can be dangerous for their health.


Improvement In Quality


Robots perform operations with superior exactitude, ensure uniformity of production due to which rejections are minimized, and reduce losses. Measurements and movements of tools being utilized are more accurate. Thus, the quality of the product manufactured is improved manifold compared to the performance by human beings.


Increase In Production


Robots have the ability to work continuously without pause, unlike human labor for which breaks and vacation are essential. Thus, production is increased by the utilization of robots in industrial applications, and consequently profits of the production unit are increased.


Execute Boring And Repetitive Work


In many production establishments work required to be executed is awfully boring, being cyclic and repetitive, due to which it is difficult for the operators to remain fully dedicated to their tasks and generate interest in their work. When tasks are monotonous, workers tend to be careless, thereby increasing the probability of accidents and malfunctions of machines. Utilization of robots has eliminated problems associated with boredom in production.


Duty During Adverse Hours


Most of the production units are required to function twenty-four hours, during day or night, on holidays, without any break so as to ensure increased production which is commensurate with the capacity of the machinery. Thus, human laborers who do not feel very comfortable working such odd hours can be employed accordingly. However, robots can be beneficially utilized whenever necessary.


Safety And Health Of Workers


Since robots are capable of working in hazardous environments, more dangerous operations are being handled by robots. Thus the safety and health of workers is ensured, thereby reducing expenditures on health and medicines. Robots are now engaged in hoisting and moving heavy objects, and perform other unsafe tasks.